

pyHMMER [image: Stars] [https://github.com/althonos/pyhmmer/stargazers]

Cython bindings and Python interface to HMMER3 [http://hmmer.org/].

[image: Actions] [https://github.com/althonos/pyhmmer/actions] [image: Coverage] [https://codecov.io/gh/althonos/pyhmmer/] [image: PyPI] [https://pypi.python.org/pypi/pyhmmer] [image: Bioconda] [https://anaconda.org/bioconda/pyhmmer] [image: Wheel] [https://pypi.org/project/pyhmmer/#files] [image: Versions] [https://pypi.org/project/pyhmmer/#files] [image: Implementations] [https://pypi.org/project/pyhmmer/#files] [image: License] [https://choosealicense.com/licenses/mit/] [image: Source] [https://github.com/althonos/pyhmmer/] [image: Mirror] [https://git.embl.de/larralde/pyhmmer/] [image: Issues] [https://github.com/althonos/pyhmmer/issues] [image: Docs] [http://pyhmmer.readthedocs.io/en/stable/?badge=stable] [image: Changelog] [https://github.com/althonos/pyhmmer/blob/master/CHANGELOG.md] [image: Downloads] [https://pepy.tech/project/pyhmmer] [image: DOI] [https://doi.org/10.5281/zenodo.4270012]

Overview

HMMER is a biological sequence analysis tool that uses profile hidden Markov
models to search for sequence homologs. HMMER3 is maintained by members of the
the Eddy/Rivas Laboratory [http://eddylab.org/] at Harvard University.

pyhmmer is a Python module, implemented using the Cython [https://cython.org/]
language, that provides bindings to HMMER3. It directly interacts with the
HMMER internals, which has the following advantages over CLI wrappers:

	single dependency:
If your software or your analysis pipeline is
distributed as a Python package, you can add pyhmmer as a dependency to
your project, and stop worrying about the HMMER binaries being properly
setup on the end-user machine.

	no intermediate files:
Everything happens in memory, in Python objects
you have control on, making it easier to pass your inputs to HMMER without
needing to write them to a temporary file. Output retrieval is also done
in memory, via instances of the pyhmmer.plan7.TopHits class.

	no input formatting:
The Easel object model is exposed in the pyhmmer.easel module, and you
have the possibility to build a Sequence object yourself to
pass to the HMMER pipeline. This is useful if your sequences are already
loaded in memory, for instance because you obtained them from another
Python library (such as Pyrodigal [https://github.com/althonos/pyrodigal]
or Biopython [https://biopython.org/]).

	no output formatting:
HMMER3 is notorious for its numerous output files
and its fixed-width tabular output, which is hard to parse (even
Bio.SearchIO.HmmerIO [https://biopython.org/docs/latest/api/Bio.SearchIO.HmmerIO.html#module-Bio.SearchIO.HmmerIO] is struggling on some sequences).

	efficient:
Using pyhmmer to launch hmmsearch on sequences and HMMs in disk storage
is typically faster than directly using the hmmsearch binary.
pyhmmer.hmmer.hmmsearch uses a different parallelisation strategy compared to
the hmmsearch binary from HMMER, which helps getting the most of
multiple CPUs.

Setup

Run pip install pyhmmer in a shell to download the latest release and all
its dependencies from PyPi, or have a look at the
Installation page to find other ways to install pyhmmer.

Library

	Installation
	PyPi

	EMBL Package Registry

	GitHub + pip

	GitHub + setuptools

	Examples
	HMM Building

	Active site analysis

	API Reference
	HMMER

	Easel

	Plan7

	Errors

	Contributing
	Setting up a local repository

	Running tests

	Coding guidelines

	Changelog
	Unreleased

	v0.3.1 - 2021-05-08

	v0.3.0 - 2021-03-11

	v0.2.2 - 2021-03-04

	v0.2.1 - 2021-01-29

	v0.2.0 - 2021-01-21

	v0.1.4 - 2021-01-15

	v0.1.3 - 2021-01-08

	v0.1.2 - 2021-01-07

	v0.1.1 - 2020-12-02

	v0.1.0 - 2020-12-01

	v0.1.0-a5 - 2020-11-28

	v0.1.0-a4 - 2020-11-24

	v0.1.0-a3 - 2020-11-19

	v0.1.0-a2 - 2020-11-12

	v0.1.0-a1 - 2020-11-10

Related Project

If despite of all the advantages listed earlier, you would rather use HMMER through its CLI,
this package will not be of great help. You should then check the
hmmer-py [https://github.com/EBI-Metagenomics/hmmer-py] package developed
by Danilo Horta [https://github.com/horta] at the EMBL-EBI [https://www.ebi.ac.uk].

License

This library is provided under the MIT License [https://choosealicense.com/licenses/mit/].
The HMMER3 and Easel code is available under
the BSD 3-clause [https://choosealicense.com/licenses/bsd-3-clause/] license,
which allows redistribution of their sources in the pyhmmer distribution.

This project is in no way not affiliated, sponsored, or otherwise endorsed by
the original HMMER [http://hmmer.org] authors. It was developed by
Martin Larralde [https://github.com/althonos/pyhmmer] during his PhD project
at the European Molecular Biology Laboratory [https://www.embl.de/]
in the Zeller team [https://github.com/zellerlab].

Installation

Note

Wheels are provided for Linux x86-64 platforms, but other machines will have
to build the wheel from the source distribution. Building pyhmmer
involves compiling HMMER3 and Easel, which requires a C compiler to be
available.

PyPi

pyhmmer is hosted on GitHub, but the easiest way to install it is to download
the latest release from its PyPi repository [https://pypi.python.org/pypi/pyhmmer].
It will install all dependencies then install pyhmmer either from a wheel if
one is available, or from source after compiling the Cython code :

$ pip install --user pyhmmer

EMBL Package Registry

You can also install manylinux wheels built from the latest commit that
passed the unit tests. Those bleeding-edge releases are available in the GitLab
Package Registry hosted on the EMBL git server. Just instruct pip to
use an extra index URL as follow:

$ pip install --user pyhmmer --extra-index-url https://git.embl.de/api/v4/projects/3638/packages/pypi/simple

GitHub + pip

If, for any reason, you prefer to download the library from GitHub, you can clone
the repository and install the repository by running (with the admin rights):

$ pip install --user https://github.com/althonos/pyhmmer/archive/master.zip

Caution

Keep in mind this will install always try to install the latest commit,
which may not even build, so consider using a versioned release instead.

GitHub + setuptools

If you do not want to use pip, you can still clone the repository and
run the setup.py file manually, although you will need to install the
build dependencies (mainly Cython [https://pypi.org/project/cython]):

$ git clone --recursive https://github.com/althonos/pyhmmer
$ cd pyhmmer
$ python setup.py build
python setup.py install

Danger

Installing packages without pip is strongly discouraged, as they can
only be uninstalled manually, and may damage your system.

Examples

	HMM Building
	Loading the alignment

	Building an HMM

	Saving the resulting HMM

	Applying the HMM to a sequence database

	Active site analysis
	Loading the HMM

	Building digitized sequences

	Running a search pipeline

	Rendering the alignments

	Checking individual positions for catalytic activity

Multiple Sequence Alignment to HMM

[1]:

import pyhmmer
pyhmmer.__version__

[1]:

'0.3.1'

[2]:

alphabet = pyhmmer.easel.Alphabet.amino()

Loading the alignment

A new HMM can be built from a single sequence, or from a multiple sequence alignment. Let’s load an alignment in digital mode so that we can build our HMM:

[3]:

with pyhmmer.easel.MSAFile("data/msa/LuxC.sto") as msa_file:
 msa_file.set_digital(alphabet)
 msa = next(msa_file)

Note

In this example, we load a multiple sequence alignment from a file, but if your program produces alignment and you wish to produce an HMM out of them, you can instantiate a DigitalMSA object yourself, e.g.:

seq1 = pyhmmer.easel.TextSequence(name="seq1", sequence="WVPKQDFT")
seq2 = pyhmmer.easel.TextSequence(name="seq2", sequence="WL--PQGE")
msa = pyhmmer.easel.DigitalMSA(name="msa", sequences=[seq1, seq2])

Because we need a DigitalMSA to build the HMM, you will have to convert it first:

msa_d = msa.digitize(alphabet)

Building an HMM

Now that we have a multiple alignment loaded in memory, we can build a pHMM using a pyhmmer.plan7.Builder. This also requires a Plan7 background model to compute the transition probabilities.

[4]:

builder = pyhmmer.plan7.Builder(alphabet)
background = pyhmmer.plan7.Background(alphabet)
hmm, _, _ = builder.build_msa(msa, background)

We can have a look at the consensus sequence of the HMM with the consensus property:

[5]:

hmm.consensus

[5]:

'lanlkleeildlleevaqrlkdeeysrryirelakilgyeeemlkalkalmallskeaLkdllereLgqpeildeflprkesyekaqpkglvvhllagNvpllpvmsileglLvknvnllkvSssdpflaaallksladvdadhtlarsisvvywkssdtkleeeivqnaDvviawGGeeAikaivkklkpgvdlikfGpkiSlavvdkeaalekaaeavAkDicvydQqAClSpqvvfvesddeaklrefaeeLaeaLekrakilPkaelsideaaaisskraeaklkyllseekkvvsekdqkwtvilseeqellnsPlsrtvnvkavpdiedvveyvtknrtlQtvglavkeselkelaeklaaaGverivevGemnlfrsGephDgvyaLqrlvrl'

Saving the resulting HMM

Now that we have an HMM, we can save it to a file to avoid having to rebuild it every time. Using the HMM.write method lets us write the HMM in ASCII format to an arbitrary file. The resulting file will also be compatible with the hmmsearch binary if you wish to use that one instead of PyHMMER.

[6]:

with open("data/hmms/txt/LuxC.hmm", "wb") as output_file:
 hmm.write(output_file)

Applying the HMM to a sequence database

Once a pHMM has been obtained, it can be applied to a sequence database with the pyhmmer.plan7.Pipeline object. Let’s iterate over the protein sequences in a FASTA to see if our new HMM gets any hits:

[7]:

pipeline = pyhmmer.plan7.Pipeline(alphabet, background=background, report_e=1e-5)

with pyhmmer.easel.SequenceFile("data/seqs/LuxC.faa") as seq_file:
 seq_file.set_digital(alphabet)
 hits = pipeline.search_hmm(query=hmm, sequences=seq_file)

We can then query the TopHits object to access the domain hits in the sequences:

[8]:

ali = hits[0].domains[0].alignment

print(" "*3, ali.target_name.decode())
print("{:3}".format(ali.hmm_from), ali.hmm_sequence[:80] + "...")
print(" "*3, ali.identity_sequence[:80] + "...")
print("{:3}".format(ali.target_from), ali.target_sequence[:80] + "...")
print(" "*3, ali.hmm_name.decode())

 tr|B6ESM7|B6ESM7_ALISL
 2 anlkleeildlleevaqrlkdeeysrr..yirelakilgyeeemlkalka...lmallskeaLkdllereLgqpeildef...
 +nl+l++++++l++v+qr+++eey+rr yir+l+++lgy++em+k l+a +m l+sk+aL+d+++++Lg+ +i+de+...
 50 NNLRLNQVVNFLYTVGQRWRSEEYTRRrtYIRDLTNFLGYSNEMAK-LEAnwiAMLLCSKSALYDIVQHDLGSLHIIDEW...
 LuxC

Active Site Analysis

This example is adapted from the method used by AntiSMASH [https://antismash.secondarymetabolites.org/#!/about] to annotate biosynthetic gene clusters. AntiSMASH uses profile HMMs to annotate enzymatic domains in protein sequences. By matching the amino acids in the alignment, it can then predict the product specificity of the enzyme.

In this notebook, we show how to reproduce this kind of analysis, using a PKSI Acyltransferase domain built by the AntiSMASH authors (the HMM in HMMER2 format can be downloaded from their git repository [https://github.com/antismash/antismash/blob/master/antismash/modules/active_site_finder/data/PKSI-AT.hmm2]).

References

	Del Vecchio, F., H. Petkovic, S. G. Kendrew, L. Low, B. Wilkinson, R. Lill, J. Cortes, B. A. Rudd, J. Staunton, and P. F. Leadlay. 2003. *Active-site residue, domain and module swaps in modular polyketide synthases.* J Ind. Microbiol Biotechnol 30:489-494. [https://pubmed.ncbi.nlm.nih.gov/12811585/]

	Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. *antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.* Nucleic Acids Res. 2011 Jul:W339-46 [https://pubmed.ncbi.nlm.nih.gov/21672958/].

[1]:

import pyhmmer
pyhmmer.__version__

[1]:

'0.3.1'

Loading the HMM

Loading a HMMER profile is done with the pyhmmer.plan7.HMMFile class, which provides an iterator over the HMMs in the file. Since we only use a single HMM, we can simply use next to get the first (and only) pyhmmer.plan7.HMM.

[2]:

with pyhmmer.plan7.HMMFile("data/hmms/txt/PKSI-AT.hmm") as hmm_file:
 hmm = next(hmm_file)

Building digitized sequences

Easel provides the code necessary to load sequences from files in common biological formats, such as GenBank or FASTA. These utilities are wrapped by the pyhmmer.easel.SequenceFile, which provides an iterator over the sequences in the file. Note that SequenceFile tries to guess the format by default, but you can force a particular format with the format keyword argument.

[3]:

with pyhmmer.easel.SequenceFile("data/seqs/PKSI.faa") as seq_file:
 seq_file.set_digital(hmm.alphabet)
 sequences = list(seq_file)

Note

The C interface of Easel allows storing a sequence in two different modes: in text mode, where the sequence letters are represented as individual characters (e.g. “A” or “Y”), and digital mode, where sequence letters are encoded as digits. To make Python programs clearer, and to allow static typecheck of the storage mode, we provide two separate classes, TextSequence and DigitalSequence, that represent a sequence stored in either of these modes.

SequenceFile yields sequences in text mode, but HMMER expects sequences in digital mode, so we must digitize them. This requires the sequence alphabet to be known, but we can just use the Alphabet instance stored in the alphabet attribute of hmm.

Running a search pipeline

With the sequences and the HMM ready, we can finally run the search pipeline: it has to be initialized with an Alphabet instance, so that the Plan7 background model can be configured accordingly. Then, we run the pipeline in search mode, providing it one HMM, and several sequences. This method returns a TopHits instance that is already sorted and thresholded.

[4]:

pipeline = pyhmmer.plan7.Pipeline(hmm.alphabet)
hits = pipeline.search_hmm(hmm, sequences)

Rendering the alignments

Domain instances store all the required information to report results in their alignment attribute. We can show the alignment between a HMM and a sequence like hmmsearch would as follow (using the first domain of the first hit as an example):

[5]:

ali = hits[0].domains[0].alignment

print(" "*3, ali.target_name.decode())
print("{:3}".format(ali.hmm_from), ali.hmm_sequence, "{:3}".format(ali.hmm_to))
print(" "*3, ali.identity_sequence)
print("{:3}".format(ali.target_from), ali.target_sequence, "{:3}".format(ali.target_to))
print(" "*3, ali.hmm_name.decode())

 sp|Q9ZGI5|PIKA1_STRVZ
 1 lFpGQGsQyaGMGreLYetePVFRqalDrCaaaLrphLgfsLlevLfgdegqeeaaaslLdqTryaQPALFAvEYALArLWrSWGvePdAVlGHSvGEyvAAcvAGVlSLEDALrLVaaRGrLMqa.lpggGaMlaVraseeevrelLapyggrlsiAAvNGPrsvVvSGdaeaieallaeLeaqGirarrLkVsHAFHSplMepmldeleevlagitpraPriPliSnvTGewltgeealdpaYWarhlRePVrFadgletLlaelGctvFlEvGPhpvLtalarrtlgesagtngadaawlaSLrrg 308
 +FpGQG+Q+aGMG eL++++ VF++a+ +C+aaL+p++++sL +v ++ +g a+ L++++++QP+ FAv+++LAr W+ Gv+P+AV+GHS+GE++AA+vAG+lSL+DA+r+V R++ ++a l+g+G+Ml+ ++se+ v e+La+++ +ls+AAvNGP ++VvSGd+ +ie+l++++ea G+rar ++V++A+HS+++e + el+evlag++p+aPr+P++S++ G+w+t+ +ld++YW+r+lR+ V Fa+++etL+ + G+t+F+Ev++hpvLt ++ t + la+Lrr+
635 VFPGQGTQWAGMGAELLDSSAVFAAAMAECEAALSPYVDWSLEAVVRQAPG-----APTLERVDVVQPVTFAVMVSLARVWQHHGVTPQAVVGHSQGEIAAAYVAGALSLDDAARVVTLRSKSIAAhLAGKGGMLSLALSEDAVLERLAGFD-GLSVAAVNGPTATVVSGDPVQIEELARACEADGVRARVIPVDYASHSRQVEIIESELAEVLAGLSPQAPRVPFFSTLEGAWITE-PVLDGGYWYRNLRHRVGFAPAVETLATDEGFTHFVEVSAHPVLTMALPGTV-----------TGLATLRRD 925
 PKS-AT.tcoffee

You may also want to see where the domains are located in the input sequence; using the DNA feature viewer [https://edinburgh-genome-foundry.github.io/DnaFeaturesViewer/] developed by the Edinburgh Genome Foundry [https://edinburgh-genome-foundry.github.io/], we can build a summary graph aligning the protein sequences to the same reference axis:

[6]:

from dna_features_viewer import GraphicFeature, GraphicRecord
import matplotlib.pyplot as plt

create an index so we can retrieve a Sequence from its name
seq_index = { seq.name:seq for seq in sequences }

fig, axes = plt.subplots(nrows=len(hits), figsize=(16, 6), sharex=True)
for ax, hit in zip(axes, hits):
 # add one feature per domain
 features = [
 GraphicFeature(start=d.alignment.target_from-1, end=d.alignment.target_to)
 for d in hit.domains
]
 length = len(seq_index[hit.name])
 desc = seq_index[hit.name].description.decode()

 # render the feature records
 record = GraphicRecord(sequence_length=length, features=features)
 record.plot(ax=ax)
 ax.set_title(desc)

make sure everything fits in the final graph!
fig.tight_layout()

/home/docs/checkouts/readthedocs.org/user_builds/pyhmmer/envs/v0.3.1/lib/python3.7/site-packages/traitlets/traitlets.py:3036: FutureWarning: --rc={'figure.dpi': 96} for dict-traits is deprecated in traitlets 5.0. You can pass --rc <key=value> ... multiple times to add items to a dict.
 FutureWarning,

[image: ../_images/examples_active_site_17_1.svg]

Checking individual positions for catalytic activity

First let’s define a function to iterate over an alignement; this will come in handy later. This function yields the position in the alignment (using the HMM coordinates) and the aligned amino acid, skipping over gaps in the HMM sequence.

[7]:

def iter_target_match(alignment):
 position = alignment.hmm_from
 for hmm_letter, amino_acid in zip(alignment.hmm_sequence, alignment.target_sequence):
 if hmm_letter != ".":
 yield position, amino_acid
 position += 1

Now, for the final step, we want to check for the specificity of the enzyme domains; Del Vecchio et al. have identified two amino acids in the acyltransferase domain that once muted will decide of the enzyme specificity for either malonyl-CoA or methylmalonyl-CoA:

[image: image0]

For this, we need to check the alignment produced by HMMER, and verify the residues of the catalytic site correspond to the ones expected by the authors. We use the function we defined previously, first to check the core amino acids are not muted, and then to check the specificity of the two remaining residues.

[8]:

POSITIONS = [93, 94, 95, 120, 196, 198]
EXPECTED = ['G', 'H', 'S', 'R', 'A', 'H']
SPECIFICITY = [195, 197]

for hit in hits:
 print("\nIn sequence {!r}:".format(hit.name.decode()))
 for domain in hit.domains:
 ali = domain.alignment
 aligned = dict(iter_target_match(ali))

 print("- Found PKSI-AT domain at positions {:4} to {:4}".format(ali.target_from, ali.target_to))
 try:
 signature = [aligned[x] for x in POSITIONS]
 spec = [aligned[x] for x in SPECIFICITY]
 except KeyError:
 print(" -> Domain likely too short")
 continue
 if signature != EXPECTED:
 print(" -> Substrate specificity unknown")
 elif spec == ["H", "F"]:
 print(" -> Malonyl-CoA specific")
 elif spec == ["Y", "S"]:
 print(" -> Methylmalonyl-CoA specific")
 else:
 print(" -> Neither malonyl-CoA nor methylmalonyl-CoA specific")

In sequence 'sp|Q9ZGI5|PIKA1_STRVZ':
- Found PKSI-AT domain at positions 635 to 925
 -> Methylmalonyl-CoA specific
- Found PKSI-AT domain at positions 1651 to 1927
 -> Methylmalonyl-CoA specific
- Found PKSI-AT domain at positions 3181 to 3475
 -> Malonyl-CoA specific

In sequence 'sp|Q9ZGI2|PIKA4_STRVZ':
- Found PKSI-AT domain at positions 563 to 837
 -> Methylmalonyl-CoA specific

In sequence 'sp|A0A089QRB9|MSL3_MYCTU':
- Found PKSI-AT domain at positions 540 to 834
 -> Neither malonyl-CoA nor methylmalonyl-CoA specific

In sequence 'sp|Q9Y8A5|LOVB_ASPTE':
- Found PKSI-AT domain at positions 562 to 585
 -> Domain likely too short
- Found PKSI-AT domain at positions 651 to 854
 -> Neither malonyl-CoA nor methylmalonyl-CoA specific

In sequence 'sp|Q54FI3|STLB_DICDI':
- Found PKSI-AT domain at positions 625 to 726
 -> Domain likely too short
- Found PKSI-AT domain at positions 766 to 838
 -> Domain likely too short
- Found PKSI-AT domain at positions 880 to 944
 -> Domain likely too short

API Reference

Cython bindings and Python interface to HMMER3.

HMMER is a biological sequence analysis tool that uses profile hidden Markov
models to search for sequence homologs. HMMER3 is maintained by members of the
the Eddy/Rivas Laboratory [http://eddylab.org/] at Harvard University.

pyhmmer is a module, implemented using the Cython [https://cython.org/]
language, that provides bindings to HMMER3. It directly interacts with the
HMMER internals, which has several advantages over CLI wrappers like
hmmer-py [https://pypi.org/project/hmmer/].

HMMER

	pyhmmer.hmmer.hmmsearch

	Search HMM profiles against a sequence database.

	pyhmmer.hmmer.phmmer

	Search protein sequences against a sequence database.

	pyhmmer.hmmer.nhmmer

	Search protein sequences against a sequence database.

	pyhmmer.hmmer.hmmpress

	Press several HMMs into a database.

Easel

	pyhmmer.easel.Alphabet

	A biological alphabet, including additional marker symbols.

	pyhmmer.easel.Bitfield

	A statically sized sequence of booleans stored as a packed bitfield.

	pyhmmer.easel.DigitalMSA

	A multiple sequence alignment stored in digital mode.

	pyhmmer.easel.DigitalSequence

	A biological sequence stored in digital mode.

	pyhmmer.easel.KeyHash

	A dynamically resized container to store byte keys using a hash table.

	pyhmmer.easel.MSA

	An abstract alignment of multiple sequences.

	pyhmmer.easel.Sequence

	An abstract biological sequence with some associated metadata.

	pyhmmer.easel.SequenceFile

	A wrapper around a sequence file, containing unaligned sequences.

	pyhmmer.easel.TextMSA

	A multiple sequence alignement stored in text mode.

	pyhmmer.easel.TextSequence

	A biological sequence stored in text mode.

	pyhmmer.easel.SSIReader

	A read-only handler for sequence/subsequence index file.

	pyhmmer.easel.SSIWriter

	A writer for sequence/subsequence index files.

Plan7

	pyhmmer.plan7.Alignment

	A single alignment of a sequence to a profile.

	pyhmmer.plan7.Background

	The null background model of HMMER.

	pyhmmer.plan7.Domain

	A single domain in a query Hit.

	pyhmmer.plan7.Domains

	A read-only view over the domains of a single Hit.

	pyhmmer.plan7.Hit

	A high-scoring database hit found by the comparison pipeline.

	pyhmmer.plan7.HMM

	A data structure storing the Plan7 Hidden Markov Model.

	pyhmmer.plan7.HMMFile

	A wrapper around a file (or database), storing serialized HMMs.

	pyhmmer.plan7.OptimizedProfile

	An optimized profile that uses platform-specific instructions.

	pyhmmer.plan7.Pipeline

	An HMMER3 accelerated sequence/profile comparison pipeline.

	pyhmmer.plan7.Profile

	A Plan7 search profile.

	pyhmmer.plan7.TopHits

	A ranked list of top-scoring hits.

Errors

	pyhmmer.errors.AllocationError

	A memory error that is caused by an unsuccessful allocation.

	pyhmmer.errors.UnexpectedError

	An unexpected error that happened in the C code.

	pyhmmer.errors.EaselError

	An error that was raised from the Easel code.

HMMER

Reimplementation of HMMER binaries with the PyHMMER API.

	
pyhmmer.hmmer.hmmsearch(queries, sequences, cpus=0, callback=None, **options)

	Search HMM profiles against a sequence database.

	Parameters

	
	queries (iterable of HMM) – The query HMMs to
search in the database.

	sequences (collection of DigitalSequence) – A
database of sequences to query.

	cpus (int [https://docs.python.org/3/library/functions.html#int]) – The number of threads to run in parallel. Pass 1
to run everything in the main thread, 0 to automatically
select a suitable number (using psutil.cpu_count [https://psutil.readthedocs.io/en/latest/index.html#psutil.cpu_count]), or any
positive number otherwise.

	callback (callable) – A callback that is called everytime a query is
processed with two arguments: the query, and the total number
of queries. This can be used to display progress in UI.

	Yields

	TopHits – An object reporting top hits for each
query, in the same order the queries were passed in the input.

	Raises

	
	AlphabetMismatch – When any of the query HMMs

	and the sequences do not share the same alphabet. –

Note

Any additional arguments passed to the hmmsearch function will be
passed transparently to the Pipeline to be created.

New in version 0.1.0.

	
pyhmmer.hmmer.phmmer(queries: Iterable[pyhmmer.easel.DigitalMSA], sequences: Collection[pyhmmer.easel.DigitalSequence], cpus: int [https://docs.python.org/3/library/functions.html#int] = 0, callback: Optional[Callable[[pyhmmer.easel.DigitalMSA, int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None]]] = None, builder: Optional[pyhmmer.plan7.Builder] = None, **options: Any) → Iterator[pyhmmer.plan7.TopHits]

	Search protein sequences against a sequence database.

	Parameters

	
	queries (iterable of DigitalSequence or DigitalMSA) – The query
sequences to search in the database.

	sequences (collection of DigitalSequence) – A
database of sequences to query.

	cpus (int [https://docs.python.org/3/library/functions.html#int]) – The number of threads to run in parallel. Pass 1 to
run everything in the main thread, 0 to automatically
select a suitable number (using psutil.cpu_count [https://psutil.readthedocs.io/en/latest/index.html#psutil.cpu_count]), or any
positive number otherwise.

	callback (callable) – A callback that is called everytime a query is
processed with two arguments: the query, and the total number
of queries. This can be used to display progress in UI.

	builder (Builder, optional) – A builder to configure
how the queries are converted to HMMs. Passing None [https://docs.python.org/3/library/constants.html#None] will create
a default instance.

	Yields

	TopHits – A top hits instance for each query,
in the same order the queries were passed in the input.

Note

Any additional keyword arguments passed to the phmmer function
will be passed transparently to the Pipeline to
be created in each worker thread.

New in version 0.2.0.

Changed in version 0.3.0: Allow using DigitalMSA queries.

	
pyhmmer.hmmer.nhmmer(queries: Iterable[pyhmmer.easel.DigitalMSA], sequences: Collection[pyhmmer.easel.DigitalSequence], cpus: int [https://docs.python.org/3/library/functions.html#int] = 0, callback: Optional[Callable[[pyhmmer.easel.DigitalMSA, int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None]]] = None, builder: Optional[pyhmmer.plan7.Builder] = None, **options: Any) → Iterator[pyhmmer.plan7.TopHits]

	Search protein sequences against a sequence database.

See also

The equivalent function for proteins, phmmer.

New in version 0.3.0.

	
pyhmmer.hmmer.hmmpress(hmms, output)

	Press several HMMs into a database.

Calling this function will create 4 files at the given location:
{output}.h3p (containing the optimized profiles),
{output}.h3m (containing the binary HMMs),
{output}.h3f (containing the MSV parameters), and
{output}.h3i (the SSI index mapping the previous files).

	Parameters

	
	hmms (iterable of HMM) – The HMMs to be pressed
together in the file.

	output (str [https://docs.python.org/3/library/stdtypes.html#str] or os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – The path to an output location
where to write the different files.

Easel

High-level interface to the Easel C library.

Easel is a library developed by the Eddy/Rivas Lab [http://eddylab.org/]
to facilitate the development of biological software in C. It is used by
HMMER [http://hmmer.org/] and Infernal [http://eddylab.org/infernal/].

Alphabet

	
class pyhmmer.easel.Alphabet

	A biological alphabet, including additional marker symbols.

This type is used to share an alphabet to several objects in the easel
and plan7 modules. Reference counting helps sharing the same instance
everywhere, instead of reallocating memory every time an alphabet is
needed.

Use the factory class methods to obtain a default Alphabet for one of
the three standard biological alphabets:

>>> dna = Alphabet.dna()
>>> rna = Alphabet.rna()
>>> aa = Alphabet.amino()

	
amino()

	Create a default amino-acid alphabet.

	
dna()

	Create a default DNA alphabet.

	
rna()

	Create a default RNA alphabet.

	
K

	The alphabet size, counting only actual alphabet symbols.

Example

>>> Alphabet.dna().K
4
>>> Alphabet.amino().K
20

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
Kp

	The complete alphabet size, including marker symbols.

Example

>>> Alphabet.dna().Kp
18
>>> Alphabet.amino().Kp
29

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
symbols

	The symbols composing the alphabet.

Example

>>> Alphabet.dna().symbols
'ACGT-RYMKSWHBVDN*~'
>>> Alphabet.rna().symbols
'ACGU-RYMKSWHBVDN*~'

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Bitfield

	
class pyhmmer.easel.Bitfield

	A statically sized sequence of booleans stored as a packed bitfield.

A bitfield is instantiated with a fixed length, and all booleans are set
to False [https://docs.python.org/3/library/constants.html#False] by default:

>>> bitfield = Bitfield(8)
>>> len(bitfield)
8
>>> bitfield[0]
False

Use indexing to access and edit individual bits:

>>> bitfield[0] = True
>>> bitfield[0]
True
>>> bitfield[0] = False
>>> bitfield[0]
False

	
__init__(length)

	Create a new bitfield with the given length.

	
count(value=True)

	Count the number occurrences of value in the bitfield.

If no argument is given, counts the number of True [https://docs.python.org/3/library/constants.html#True] occurences.

Example

>>> bitfield = Bitfield(8)
>>> bitfield.count(False)
8
>>> bitfield[0] = bitfield[1] = True
>>> bitfield.count()
2

	
toggle(index)

	Switch the value of one single bit.

Example

>>> bitfield = Bitfield(8)
>>> bitfield[0]
False
>>> bitfield.toggle(0)
>>> bitfield[0]
True
>>> bitfield.toggle(0)
>>> bitfield[0]
False

KeyHash

	
class pyhmmer.easel.KeyHash

	A dynamically resized container to store byte keys using a hash table.

Internally uses Bob Jenkins’ one at a time hash, a simple and
efficient hash function published in 1997 that exhibits
avalanche [https://en.wikipedia.org/wiki/Avalanche_effect]
behaviour.

Example

Add new keys to the key hash using the add method
like you would with a Python set [https://docs.python.org/3/library/stdtypes.html#set]:

>>> kh = KeyHash()
>>> kh.add(b"key")
0

Check if a key hash contains a given key:

>>> b"key" in kh
True
>>> b"missing" in kh
False

Get the index associated with a key using the indexing notation:

>>> kh[b"key"]
0
>>> kh[b"missing"]
Traceback (most recent call last):
 ...
KeyError: b'missing'

See also

The Wikipedia article for Bob Jenkins’ hash functions:
https://en.wikipedia.org/wiki/Jenkins_hash_function

	
__init__()

	Create a new empty key-hash collection.

	
add(item)

	Add a new key to the hash table, and return its index.

If key was already in the hash table, the previous index is
returned:

>>> kh = KeyHash()
>>> kh.add(b"first")
0
>>> kh.add(b"second")
1
>>> kh.add(b"first")
0

	Parameters

	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key to add to the hash table.

	Returns

	int [https://docs.python.org/3/library/functions.html#int] – The index corresponding to the added key.

New in version 0.3.0.

	
clear()

	Remove all entries from the collection.

	
copy()

	Create and return an exact copy of this mapping.

Example

>>> kh = KeyHash()
>>> kh.add(b"key")
0
>>> copy = kh.copy()
>>> b"key" in copy
True

Multiple Sequence Alignment

	
class pyhmmer.easel.MSA

	An abstract alignment of multiple sequences.

Hint

Use len(msa) to get the number of columns in the alignment,
and len(msa.sequences) to get the number of sequences (i.e.
the number of rows).

	
checksum()

	Calculate a 32-bit checksum for the multiple sequence alignment.

	
write(fh, format)

	Write the multiple sequence alignement to a file handle.

	Parameters

	
	fh (io.IOBase [https://docs.python.org/3/library/io.html#io.IOBase]) – A Python file handle, opened in binary mode.

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the multiple sequence alignment
file format to use.

New in version 0.3.0.

	
accession

	The accession of the alignment, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
author

	The author of the alignment, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
description

	The description of the sequence, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
name

	The name of the alignment, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
class pyhmmer.easel.TextMSA(MSA)

	A multiple sequence alignement stored in text mode.

	
__init__(name=None, description=None, accession=None, sequences=None, author=None)

	Create a new text-mode alignment with the given sequences.

	Parameters

	
	name (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The name of the alignment, if any.

	description (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The description of the
alignment, if any.

	accession (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The accession of the alignment,
if any.

	sequences (iterable of TextSequence) – The sequences to store
in the multiple sequence alignment. All sequences must have
the same length. They also need to have distinct names.

	author (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The author of the alignment, often
used to record the aligner it was created with.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When the alignment cannot be created from the
 given sequences.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – When sequences is not an iterable of
 TextSequence objects.

Example

>>> s1 = TextSequence(name=b"seq1", sequence="ATGC")
>>> s2 = TextSequence(name=b"seq2", sequence="ATGC")
>>> msa = TextMSA(name=b"msa", sequences=[s1, s2])
>>> len(msa)
4

Changed in version 0.3.0: Allow creating an alignment from an iterable of TextSequence.

	
copy()

	Duplicate the text sequence alignment, and return the copy.

	
digitize(alphabet)

	Convert the text alignment to a digital alignment using alphabet.

	Returns

	DigitalMSA – An alignment in digital mode containing the same
sequences digitized with alphabet.

	
sequences

	A view of the sequences in the alignment.

This property lets you access the individual sequences in the
multiple sequence alignment as TextSequence instances.

Example

Query the number of sequences in the alignment with len [https://docs.python.org/3/library/functions.html#len], or
access individual members via indexing notation:

>>> s1 = TextSequence(name=b"seq1", sequence="ATGC")
>>> s2 = TextSequence(name=b"seq2", sequence="ATGC")
>>> msa = TextMSA(name=b"msa", sequences=[s1, s2])
>>> len(msa.sequences)
2
>>> msa.sequences[0].name
b'seq1'

Caution

Sequences in the list are copies, so editing their attributes
will have no effect on the alignment:

>>> msa.sequences[0].name
b'seq1'
>>> msa.sequences[0].name = b"seq1bis"
>>> msa.sequences[0].name
b'seq1'

Support for this feature will be added in a future version, but
can be circumvented for now by forcingly setting the updated
version of the object:

>>> seq = msa.sequences[0]
>>> seq.name = b"seq1bis"
>>> msa.sequences[0] = seq
>>> msa.sequences[0].name
b'seq1bis'

New in version 0.3.0.

	Type

	_TextMSASequences

	
class pyhmmer.easel.DigitalMSA(MSA)

	A multiple sequence alignment stored in digital mode.

	
alphabet

	The biological alphabet used to encode this
sequence alignment to digits.

	Type

	Alphabet

	
__init__(alphabet, name=None, description=None, accession=None, sequences=None, author=None)

	Create a new digital-mode alignment with the given sequences.

	Parameters

	
	alphabet (Alphabet) – The alphabet of the alignmed sequences.

	name (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The name of the alignment, if any.

	description (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The description of the
alignment, if any.

	accession (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The accession of the alignment,
if any.

	sequences (iterable of DigitalSequence) – The sequences to
store in the multiple sequence alignment. All sequences must
have the same length and alphabet. They also need to have
distinct names set.

	author (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – The author of the alignment, often
used to record the aligner it was created with.

Changed in version 0.3.0: Allow creating an alignment from an iterable of DigitalSequence.

	
copy()

	Duplicate the digital sequence alignment, and return the copy.

	
textize()

	Convert the digital alignment to a text alignment.

	Returns

	TextMSA – A copy of the alignment in text-mode.

New in version 0.3.0.

	
sequences

	A view of the sequences in the alignment.

This property lets you access the individual sequences in the
multiple sequence alignment as DigitalSequence instances.

See also

The documentation for the TextMSA.sequences property, which
contains some additional information.

New in version 0.3.0.

	Type

	_DigitalMSASequences

Sequence

	
class pyhmmer.easel.Sequence

	An abstract biological sequence with some associated metadata.

Easel provides two different mode to store a sequence: text, or digital.
In the HMMER code, changing from one mode to another mode is done in
place, which allows recycling memory. However, doing so can be confusing
since there is no way to know statically the representation of a sequence.

To avoid this, pyhmmer provides two subclasses of the Sequence
abstract class to maintain the mode contract: TextSequence and
DigitalSequence. Functions expecting sequences in digital format, like
pyhmmer.hmmsearch, can then use Python type system to make sure they
receive sequences in the right mode. This allows type checkers such as
mypy to detect potential contract breaches at compile-time.

	
checksum()

	Calculate a 32-bit checksum for the sequence.

	
clear()

	Reinitialize the sequence for re-use.

	
copy()

	Duplicate the sequence, and return the copy.

	
write(fh)

	Write the sequence alignement to a file handle, in FASTA format.

	Parameters

	fh (io.IOBase [https://docs.python.org/3/library/io.html#io.IOBase]) – A Python file handle, opened in binary mode.

New in version 0.3.0.

	
accession

	The accession of the sequence.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
description

	The description of the sequence.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
name

	The name of the sequence.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
source

	The source of the sequence, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class pyhmmer.easel.TextSequence(Sequence)

	A biological sequence stored in text mode.

Hint

Use the sequence property to access the sequence letters as a
Python string.

	
__init__(name=None, description=None, accession=None, sequence=None, source=None)

	Create a new text-mode sequence with the given attributes.

	
copy()

	Duplicate the text sequence, and return the copy.

	
digitize(alphabet)

	Convert the text sequence to a digital sequence using alphabet.

	Returns

	DigitalSequence – A copy of the sequence in digital-model,
digitized with alphabet.

	
reverse_complement()

	Build the reverse complement of the sequence.

This method assumes that the sequence alphabet is IUPAC/DNA. If the
sequence contains any unknown letters, they will be replaced by
\(N\) in the reverse-complement.

	Parameters

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to copy the sequence before
computing its reverse complement. With False [https://docs.python.org/3/library/constants.html#False] (the default),
the method will return a copy of the sequence that has been
reverse-complemented. With True [https://docs.python.org/3/library/constants.html#True], it will reverse-complement
inplace and return None [https://docs.python.org/3/library/constants.html#None].

	Raises

	UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning] – When the sequence contains unknown characters.

Example

>>> seq = TextSequence(sequence="ATGC")
>>> seq.reverse_complement().sequence
'GCAT'

Caution

The copy made when inplace is False [https://docs.python.org/3/library/constants.html#False] is an exact copy, so
the name, description and accession of the copy will be
the same. This could lead to duplicates if you’re not careful!

New in version 0.3.0.

	
sequence

	The raw sequence letters, as a Python string.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class pyhmmer.easel.DigitalSequence(Sequence)

	A biological sequence stored in digital mode.

	
alphabet

	The biological alphabet used to
encode this sequence to digits.

	Type

	Alphabet, readonly

Hint

Use the sequence property to access the sequence digits as a
memory view, allowing to access the individual bytes. This can be
combined with numpy.asarray to get the sequence as an array with
zero-copy.

	
__init__(alphabet, name=None, description=None, accession=None, sequence=None, source=None)

	Create a new digital-mode sequence with the given attributes.

New in version 0.1.4.

	
copy()

	Duplicate the digital sequence, and return the copy.

	
reverse_complement()

	Build the reverse complement of the sequence.

	Parameters

	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to copy the sequence before
computing its reverse complement. With False [https://docs.python.org/3/library/constants.html#False] (the default),
the method will return a copy of the sequence that has been
reverse-complemented. With True [https://docs.python.org/3/library/constants.html#True], it will reverse-complement
inplace and return None [https://docs.python.org/3/library/constants.html#None].

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When the alphabet of the DigitalSequence does

	not have a complement mapping set (e.g., Alphabet.amino) –

Caution

The copy made when inplace is False [https://docs.python.org/3/library/constants.html#False] is an exact copy, so
the name, description and accession of the copy will be
the same. This could lead to duplicates if you’re not careful!

New in version 0.3.0.

	
textize()

	Convert the digital sequence to a text sequence.

	Returns

	TextSequence – A copy of the sequence in text-mode.

New in version 0.1.4.

	
sequence

	The raw sequence digits, as a memory view.

	Type

	memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]

Sequence File

	
class pyhmmer.easel.SequenceFile

	A wrapper around a sequence file, containing unaligned sequences.

This class supports reading sequences stored in different formats, such
as FASTA, GenBank or EMBL. The format of each file can be automatically
detected, but it is also possible to pass an explicit format specifier
when the SequenceFile is instantiated.

New in version 0.2.0: The alphabet attribute.

	
__init__(file, format=None)

	Create a new sequence file parser wrapping the given file.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a file containing sequences in one of
the supported file formats.

	format (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format of the file, or None [https://docs.python.org/3/library/constants.html#None] to
autodetect. Supported values are: fasta, embl,
genbank, ddbj, uniprot, ncbi, daemon,
hmmpgmd, fmindex.

	
close()

	Close the file and free the resources used by the parser.

	
guess_alphabet()

	Guess the alphabet of an open SequenceFile.

This method tries to guess the alphabet of a sequence file by
inspecting the first sequence in the file. It returns the alphabet,
or None [https://docs.python.org/3/library/constants.html#None] if the file alphabet cannot be reliably guessed.

	Raises

	
	EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] – if the file is empty.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if a parse error occurred.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if this methods is called after the file was closed.

	
parse(buffer, format)

	Parse a sequence from a binary buffer using the given format.

	
parseinto(seq, buffer, format)

	Parse a sequence from a binary buffer into seq.

	
read(skip_info=False, skip_sequence=False)

	Read the next sequence from the file.

	Parameters

	
	skip_info (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True [https://docs.python.org/3/library/constants.html#True] to disable reading the sequence
metadata, and only read the sequence letters. Defaults to
False [https://docs.python.org/3/library/constants.html#False].

	skip_sequence (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True [https://docs.python.org/3/library/constants.html#True] to disable reading the
sequence letters, and only read the sequence metadata.
Defaults to False [https://docs.python.org/3/library/constants.html#False].

	Returns

	Sequence – The next sequence in the file, or None [https://docs.python.org/3/library/constants.html#None] if all
sequences were read from the file.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When attempting to read a sequence from a closed
 file, or when the file could not be parsed.

Hint

This method allocates a new sequence, which is not efficient in
case the sequences are being read within a tight loop. Use
SequenceFile.readinto with an already initialized Sequence
if you can to recycle the internal buffers.

	
readinto(seq, skip_info=False, skip_sequence=False)

	Read the next sequence from the file, using seq to store data.

	Parameters

	
	seq (Sequence) – A sequence object to use to store
the next entry in the file. If this sequence was used before,
it must be properly reset (using the Sequence.clear method)
before using it again with readinto.

	skip_info (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True [https://docs.python.org/3/library/constants.html#True] to disable reading the sequence
metadata, and only read the sequence letters. Defaults to
False`.

	skip_sequence (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True [https://docs.python.org/3/library/constants.html#True] to disable reading the
sequence letters, and only read the sequence metadata.
Defaults to False [https://docs.python.org/3/library/constants.html#False].

	Returns

	Sequence – A reference to seq that was passed
as an input, or None [https://docs.python.org/3/library/constants.html#None] if no sequences are left in the file.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When attempting to read a sequence from a closed
 file, or when the file could not be parsed.

Example

Use SequenceFile.readinto to loop over the sequences in a file
while recycling the same Sequence buffer:

>>> with SequenceFile("vendor/hmmer/testsuite/ecori.fa") as sf:
... seq = TextSequence()
... while sf.readinto(seq) is not None:
... # ... process seq here ... #
... seq.clear()

	
set_digital(alphabet)

	Set the SequenceFile to read in digital mode with alphabet.

This method can be called even after the first sequences have been
read; it only affects subsequent sequences in the file.

Sequence / Subsequence Index

	
class pyhmmer.easel.SSIReader

	A read-only handler for sequence/subsequence index file.

	
class Entry(fd, record_offset, data_offset, record_length)

	
	
property data_offset

	Alias for field number 2

	
property fd

	Alias for field number 0

	
property record_length

	Alias for field number 3

	
property record_offset

	Alias for field number 1

	
class FileInfo(name, format)

	
	
property format

	Alias for field number 1

	
property name

	Alias for field number 0

	
__init__(file)

	Create a new SSI file reader for the file at the given location.

	Parameters

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a sequence/subsequence index file to
read.

	
close()

	Close the SSI file reader.

	
file_info(fd)

	Retrieve the FileInfo of the descriptor.

	
find_name(key)

	Retrieve the Entry for the given name.

	
class pyhmmer.easel.SSIWriter

	A writer for sequence/subsequence index files.

	
__init__(file)

	Create a new SSI file write for the file at the given location.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a sequence/subsequence index file to
write.

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to create a file if one does
not exist.

	Raises

	
	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – When the path to the file cannot be resolved.

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – When the file exists and exclusive is True [https://docs.python.org/3/library/constants.html#True].

	
add_alias(alias, key)

	Make alias an alias of key in the index.

	
add_file(filename, format=0)

	Add a new file to the index.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to register.

	format (int [https://docs.python.org/3/library/functions.html#int]) – A format code to associate with the file, or 0.

	Returns

	int [https://docs.python.org/3/library/functions.html#int] – The filehandle associated with the new indexed file.

	
add_key(key, fd, record_offset, data_offset=0, record_length=0)

	Add a new entry to the index with the given key.

	
close()

	Close the SSI file writer.

Plan7

High-level interface to the Plan7 data model.

Plan7 is the model architecture used by HMMER since HMMER2.

See also

Details about the Plan 7 architecture in the HMMER documentation [http://www.csb.yale.edu/userguides/seq/hmmer/docs/node11.html].

Alignment

	
class pyhmmer.plan7.Alignment

	A single alignment of a sequence to a profile.

	
hmm_accession

	The accession of the query, or its name if it has none.

New in version 0.1.4.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
hmm_from

	The start coordinate of the alignment in the query HMM.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
hmm_name

	The name of the query HMM.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
hmm_sequence

	The sequence of the query HMM in the alignment.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
hmm_to

	The end coordinate of the alignment in the query HMM.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
identity_sequence

	The identity sequence between the query and the target.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
target_from

	The start coordinate of the alignment in the target sequence.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
target_name

	The name of the target sequence.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
target_sequence

	The sequence of the target sequence in the alignment.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
target_to

	The end coordinate of the alignment in the target sequence.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Background Model

	
class pyhmmer.plan7.Background

	The null background model of HMMER.

	
__init__(alphabet, uniform=False)

	Create a new background model for the given alphabet.

	Parameters

	
	alphabet (pyhmmer.easel.Alphabet) – The alphabet to create the
background model with.

	uniform (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to create the null model with
uniform frequencies. Defaults to False [https://docs.python.org/3/library/constants.html#False].

	
copy()

	Create a copy of the null model with the same parameters.

	
L

	The mean of the null model length distribution, in residues.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Builder

	
class pyhmmer.plan7.Builder

	A factory for constructing new HMMs from raw sequences.

New in version 0.2.0.

	
__init__(alphabet, *, architecture='fast', weighting='pb', effective_number='entropy', prior_scheme='alpha', symfrac=0.5, fragthresh=0.5, wid=0.62, esigma=45.0, eid=0.62, EmL=200, EmN=200, EvL=200, EvN=200, EfL=100, EfN=200, Eft=0.04, seed=42, ere=None, popen=None, pextend=None)

	Create a new sequence builder with the given configuration.

	Parameters

	alphabet (Alphabet) – The alphabet the builder
expects the sequences to be in.

	Keyword Arguments

	
	popen (float [https://docs.python.org/3/library/functions.html#float]) – The gap open probability to use with the score
system. Default depends on the alphabet: 0.02 for proteins,
0.03125 for nucleotides.

	pextend (float [https://docs.python.org/3/library/functions.html#float]) – The gap extend probability to use with the
score system. Default depends on the alphabet: 0.4 for
proteins, 0.75 for nucleotides.

	
build(sequence, background)

	Build a new HMM from sequence using the builder configuration.

	Parameters

	
	sequence (DigitalSequence) – A single biological
sequence in digital mode to build a HMM with.

	background (pyhmmer.plan7.background) – The background model
to use to create the HMM.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When either sequence or background have
 the wrong alphabet for this builder.

	
build_msa(msa, background)

	Build a new HMM from msa using the builder configuration.

	Parameters

	
	msa (DigitalMSA) – A multiple sequence
alignment in digital mode to build a HMM with.

	background (pyhmmer.plan7.background) – The background model
to use to create the HMM.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When either msa or background have
 the wrong alphabet for this builder.

New in version 0.3.0.

	
copy()

	Create a duplicate Builder instance with the same arguments.

	
seed

	The seed used by the internal random number generator.

Setting the seed will effectively reinitialize the internal RNG. In
the special case the seed is 0, a one-time arbitrary seed will be
chosen and the RNG will no be reseeded for reproducibility.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Domains

	
class pyhmmer.plan7.Domain

	A single domain in a query Hit.

	
c_evalue

	The conditional e-value for the domain.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
i_evalue

	The independent e-value for the domain.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
score

	The overall score in bits, null-corrected.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
class pyhmmer.plan7.Domains

	A read-only view over the domains of a single Hit.

Hits

	
class pyhmmer.plan7.Hit

	A high-scoring database hit found by the comparison pipeline.

	
accession

	The accession of the database hit, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
description

	The description of the database hit, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
domains

	The list of domains aligned to this hit.

	Type

	Domains

	
evalue

	The e-value of the hit.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
name

	The name of the database hit.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
pre_score

	Bit score of the sequence before null2 correction.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
score

	Bit score of the sequence with all domains after correction.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
class pyhmmer.plan7.TopHits

	A ranked list of top-scoring hits.

TopHits are thresholded using the parameters from the pipeline, and are
sorted by key when you obtain them from a Pipeline instance:

>>> abc = thioesterase.alphabet
>>> hits = Pipeline(abc).search_hmm(thioesterase, proteins)
>>> hits.is_sorted()
True

Use len [https://docs.python.org/3/library/functions.html#len] to query the number of top hits, and the usual indexing notation
to extract a particular Hit:

>>> len(hits)
1
>>> hits[0].name
b'938293.PRJEB85.HG003687_113'

	
__init__()

	Create an empty TopHits instance.

	
clear()

	Free internals to allow reusing for a new pipeline run.

	
is_sorted(by='key')

	Check whether or not the hits are sorted with the given method.

See sort for a list of allowed values for
the by argument.

	
sort(by='key')

	Sort hits in the current instance using the given method.

	Parameters

	by (str [https://docs.python.org/3/library/stdtypes.html#str]) – The comparison method to use to compare hits.
Allowed values are: key (the default) to sort by key, or
seqidx to sort by sequence index and alignment position.

	
to_msa(alphabet, trim=False, digitize=False, all_consensus_cols=False)

	Create multiple alignment of all included domains.

	Parameters

	
	alphabet (Alphabet) – The alphabet of the
HMM this TopHits was obtained from. It is required to
convert back hits to single sequences.

	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – Trim off any residues that get assigned to
flanking \(N\) and \(C\) states (in profile traces)
or \(I_0\) and \(I_m\) (in core traces).

	digitize (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True [https://docs.python.org/3/library/constants.html#True], returns a DigitalMSA
instead of a TextMSA.

	all_consensus_cols (bool [https://docs.python.org/3/library/functions.html#bool]) – Force a column to be created for
every consensus column in the model, even if it means having
all gap character in a column.

	Returns

	MSA – A multiple sequence alignment containing
the reported hits, either a TextMSA or a DigitalMSA
depending on the value of the digitize argument.

New in version 0.3.0.

	
included

	The number of hits that are above the inclusion threshold.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
reported

	The number of hits that are above the reporting threshold.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

HMM

	
class pyhmmer.plan7.HMM

	A data structure storing the Plan7 Hidden Markov Model.

	
__init__(M, alphabet)

	Create a new HMM from scratch.

	Parameters

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – The length of the model (i.e. the number of nodes).

	alphabet (Alphabet) – The alphabet of the model.

	
copy()

	Return a copy of the HMM with the exact same configuration.

New in version 0.3.0.

	
write(fh, binary=False)

	Write the HMM to a file handle.

	Parameters

	
	fh (io.IOBase [https://docs.python.org/3/library/io.html#io.IOBase]) – A Python file handle, opened in binary mode
(this must be the case even with binary=False, since
the C code will emit bytes in either case).

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass False to emit the file in ASCII mode
using the latest supported HMMER format, or True to use
the binary HMMER3 format.

	
zero()

	Set all parameters to zero, including model composition.

	
M

	The length of the model (i.e. the number of nodes).

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
accession

	The accession of the HMM, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
checksum

	The 32-bit checksum of the HMM, if any.

The checksum if calculated from the alignment the HMM was created
from, and was introduced in more recent HMM formats. This means
some HMM objects may have a non-None [https://docs.python.org/3/library/constants.html#None] checksum.

New in version 0.2.1.

Changed in version 0.3.1: Returns None [https://docs.python.org/3/library/constants.html#None] if the HMM flag for the checksum is not set.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	
command_line

	The command line that built the model.

For HMMs created with Builder, this defaults to
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv]. It can however be set to any string, including multiline
to show successive commands.

Example

>>> print(thioesterase.command_line)
hmmbuild Thioesterase.hmm Thioesterase.fa
hmmcalibrate Thioesterase.hmm

New in version 0.3.1.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
consensus

	The consensus residue line of the HMM, if set.

New in version 0.3.0.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
consensus_accessibility

	The consensus accessibility of the HMM, if any.

New in version 0.3.1.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
consensus_structure

	The consensus structure of the HMM, if any.

New in version 0.3.1.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
description

	The description of the HMM, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
insert_emissions

	The insert emissions of the model.

The returned memoryview exposes a matrix of dimensions
\((M, K)\), with one row per node and one column per
alphabet symbol.

Hint

Use numpy.asarray to convert the memoryview to a 2D aray:

>>> i = thioesterase.insert_emissions
>>> numpy.asarray(i).reshape((thioesterase.M, thioesterase.alphabet.K))
array([[...]], dtype=float32)

New in version 0.3.1.

	Type

	memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] of float [https://docs.python.org/3/library/functions.html#float]

	
match_emissions

	The match emissions of the model.

The returned memory view exposes a matrix of dimensions
\((M, K)\), with one row per node, and one column per
alphabet symbol.

Hint

Use numpy.asarray to convert the memory view to a 2D array:

>>> m = thioesterase.match_emissions
>>> numpy.asarray(m).reshape((thioesterase.M, thioesterase.alphabet.K))
array([[...]], dtype=float32)

New in version 0.3.1.

	Type

	memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] of float [https://docs.python.org/3/library/functions.html#float]

	
model_mask

	The model mask line from the alignment, if any.

New in version 0.3.1.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
name

	The name of the HMM, if any.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
nseq

	The number of training sequences used, if any.

If the HMM was created from a multiple sequence alignment, this
corresponds to the number of sequences in the MSA.

Example

>>> thioesterase.nseq
278

New in version 0.3.1.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	
nseq_effective

	The number of effective sequences used, if any.

New in version 0.3.1.

	Type

	float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]

	
reference

	The reference line from the alignment, if any.

This is relevant if the HMM was built from a multiple sequence
alignment (e.g. by Builder.build_msa, or by an external
hmmbuild pipeline run).

New in version 0.3.1.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
transition_probabilities

	The transition probabilities of the model.

The returned memory view exposes a matrix of dimensions
\((M+1, 7)\), with one row per node (plus one extra row for
the entry probabilities), and one column per transition.

Hint

Use numpy.asarray to convert the memory view to a 2D array:

>>> t = thioesterase.transition_probabilities
>>> numpy.asarray(t).reshape((thioesterase.M+1, 7))
array([[...]], dtype=float32)

New in version 0.3.1.

	Type

	memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] of float [https://docs.python.org/3/library/functions.html#float]

HMM File

	
class pyhmmer.plan7.HMMFile

	A wrapper around a file (or database), storing serialized HMMs.

	
__init__(file, db=True)

	Create a new HMM reader from the given file.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str] or file-like object) – Either the path to a file
containing the HMMs to read, or a file-like object opened in
binary-mode.

	db (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to False [https://docs.python.org/3/library/constants.html#False] to force the parser to ignore the
pressed HMM database if it finds one. Defaults to False [https://docs.python.org/3/library/constants.html#False].

	
close()

	Close the HMM file and free resources.

This method has no effect if the file is already closed. It is called
automatically if the HMMFile was used in a context:

>>> with HMMFile("tests/data/hmms/bin/PKSI-AT.h3m") as hmm_file:
... hmm = next(hmm_file)

Pipeline

	
class pyhmmer.plan7.Pipeline

	An HMMER3 accelerated sequence/profile comparison pipeline.

	
__init__(alphabet, background=None, *, bias_filter=True, report_e=10.0, null2=True, seed=42, Z=None, domZ=None)

	Instantiate and configure a new accelerated comparison pipeline.

	Parameters

	
	alphabet (Alphabet) – The biological alphabet the
of the HMMs and sequences that are going to be compared. Used
to build the background model.

	background (Background, optional) – The background
model to use with the pipeline, or None to create and use
a default one. The pipeline needs ownership of the background
model, so any background model passed there will be copied.

	Keyword Arguments

	
	bias_filter (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to enable composition bias
filter. Defaults to True.

	null2 (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to compute biased composition score
corrections. Defaults to True.

	report_e (float [https://docs.python.org/3/library/functions.html#float]) – Report hits with e-value lower than or
equal to this threshold in output. Defaults to 10.0.

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – The seed to use with the random number
generator. Pass 0 to use a one-time arbitrary seed, or
None [https://docs.python.org/3/library/constants.html#None] to keep the default seed from HMMER.

	
clear()

	Reset the pipeline configuration to its default state.

	
scan_seq(query, hmms)

	Run the pipeline using a query sequence against a profile database.

	Parameters

	
	query (DigitalSequence) – The sequence object to
use to query the profile database.

	hmms (iterable of DigitalSequence) – The
HMM profiles to query. Pass a HMMFile
instance to read from disk iteratively.

	Returns

	TopHits – the hits found in the profile database.

	Raises

	AlphabetMismatch – When the alphabet of the
 current pipeline does not match the alphabet of the given
 query or profile.

Caution

In the current version, this method is not optimized to use
the pressed database, even if it exists. This will cause the
MSV and SSV filters to be rebuilt at each iteration, which could
be slow. Consider at least pre-fetching the HMM database if
calling this method several times in a row.

New in version v0.4.0.

	
search_hmm(query, sequences)

	Run the pipeline using a query HMM against a sequence database.

	Parameters

	
	query (HMM) – The HMM object to use to query the
sequence database.

	sequences (iterable of DigitalSequence) – The
sequences to query with the HMM. For instance, pass a
SequenceFile in digital mode to read from
disk iteratively.

	Returns

	TopHits – the hits found in the sequence database.

	Raises

	AlphabetMismatch – When the alphabet of the
 current pipeline does not match the alphabet of the given
 HMM.

New in version 0.2.0.

	
search_msa(query, sequences, builder=None)

	Run the pipeline using a query alignment against a sequence database.

	Parameters

	
	query (DigitalMSA) – The multiple sequence
alignment to use to query the sequence database.

	sequences (iterable of DigitalSequence) – The
sequences to query. Pass a SequencesFile
instance in digital mode to read from disk iteratively.

	builder (Builder, optional) – A HMM builder to
use to convert the query to a HMM. If
None [https://docs.python.org/3/library/constants.html#None] is given, it will use a default one.

	Returns

	TopHits – the hits found in the sequence database.

	Raises

	AlphabetMismatch – When the alphabet of the
 current pipeline does not match the alphabet of the given
 query.

New in version 0.3.0.

	
search_seq(query, sequences, builder=None)

	Run the pipeline using a query sequence against a sequence database.

	Parameters

	
	query (DigitalSequence) – The sequence object to
use to query the sequence database.

	sequences (iterable of DigitalSequence) – The
sequences to query. Pass a SequenceFile
instance in digital mode to read from disk iteratively.

	builder (Builder, optional) – A HMM builder to
use to convert the query to a HMM. If
None [https://docs.python.org/3/library/constants.html#None] is given, it will use a default one.

	Returns

	TopHits – the hits found in the sequence database.

	Raises

	AlphabetMismatch – When the alphabet of the
 current pipeline does not match the alphabet of the given
 query.

New in version 0.2.0.

	
Z

	The number of effective targets searched.

It is used to compute the independent e-value for each domain, and
for an entire hit. If None [https://docs.python.org/3/library/constants.html#None], the parameter number will be set
automatically after all the comparisons have been done. Otherwise,
it can be set to an arbitrary number.

	Type

	float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]

	
domZ

	The number of significant targets.

It is used to compute the conditional e-value for each domain. If
None [https://docs.python.org/3/library/constants.html#None], the parameter number will be set automatically after all
the comparisons have been done, and all hits have been thresholded.
Otherwise, it can be set to an arbitrary number.

	Type

	float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]

	
seed

	The seed used by the internal random number generator.

New in version 0.2.0.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Profile

	
class pyhmmer.plan7.Profile

	A Plan7 search profile.

	
__init__(M, alphabet)

	Create a new profile for the given alphabet.

	Parameters

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – The length of the profile, i.e. the number of nodes.

	alphabet (Alphabet) – The alphabet to use with
this profile.

	
clear()

	Clear internal buffers to reuse the profile without reallocation.

	
configure(hmm, background, L, multihit=True, local=True)

	Configure a search profile using the given models.

	Parameters

	
	hmm (pyhmmer.plan7.HMM) – The model HMM with core probabilities.

	bg (pyhmmer.plan7.Background) – The null background model.

	L (int [https://docs.python.org/3/library/functions.html#int]) – The expected target sequence length.

	multihit (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use multihit modes.

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to use non-local modes.

	
copy()

	Return a copy of the profile with the exact same configuration.

	
is_local()

	Return whether or not the profile is in a local alignment mode.

	
is_multihit()

	Returns whether or not the profile is in a multihit alignment mode.

	
optimized()

	Convert the profile to a platform-specific optimized profile.

	Returns

	OptimizedProfile – The platform-specific optimized profile built
using the configuration of this profile.

	
L

	The current configured target sequence length.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
M

	The length of the profile (i.e. the number of nodes).

New in version 0.3.0.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
accession

	The accession of the profile, if any.

New in version 0.3.0.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
description

	The description of the profile, if any.

New in version 0.3.0.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
name

	The name of the profile, if any.

New in version 0.3.0.

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or None [https://docs.python.org/3/library/constants.html#None]

	
class pyhmmer.plan7.OptimizedProfile

	An optimized profile that uses platform-specific instructions.

	
__init__(M, alphabet)

	Create a new optimized profile from scratch.

Optimized profiles use platform-specific code to accelerate the
various algorithms. Although you can allocate an optimized profile
yourself, the only way to obtain a fully configured profile is to
create it with the Profile.optimized method, after having
configured the profile for a given HMM with Profile.configure.

	Parameters

	
	M (int [https://docs.python.org/3/library/functions.html#int]) – The length of the model (i.e. the number of nodes).

	alphabet (Alphabet) – The alphabet of the model.

	
copy()

	Create an exact copy of the optimized profile.

	
is_local()

	Return whether or not the profile is in a local alignment mode.

	
write(fh_filter, fh_profile)

	Write an optimized profile to two separate files.

HMMER implements an acceleration pipeline using several scoring
algorithms. Parameters for MSV (the Multi ungapped Segment Viterbi)
are saved independently to the fh_filter handle, while the rest of
the profile is saved to fh_profile.

Errors

Common errors and status codes for the easel and hmmer modules.

	
exception pyhmmer.errors.AllocationError(MemoryError)

	A memory error that is caused by an unsuccessful allocation.

	
exception pyhmmer.errors.UnexpectedError(RuntimeError)

	An unexpected error that happened in the C code.

As a user of this library, you should never see this exception being
raised. If you do, please open an issue with steps to reproduce on the
bug tracker [https://github.com/althonos/pyhmmer/issues], so that
proper error handling can be added to the relevant part of the bindings.

	
exception pyhmmer.errors.EaselError(RuntimeError)

	An error that was raised from the Easel code.

Contributing to pyHMMER

For bug fixes or new features, please file an issue before submitting a
pull request. If the change isn’t trivial, it may be best to wait for
feedback.

Setting up a local repository

Make sure you clone the repository in recursive mode, so you also get the
wrapped code of Easel and HMMER, which are exposed as git submodules:

$ git clone --recursive https://github.com/althonos/pyhmmer

Running tests

Tests are written as usual Python unit tests with the unittest module of
the standard library. Running them requires the extension to be built
locally:

$ python setup.py build_ext --debug --inplace
$ python -m unittest discover -vv

Coding guidelines

This project targets Python 3.6 or later.

Python objects should be typed; since it is not supported by Cython,
you must manually declare types in type stubs (.pyi files). In Python
files, you can add type annotations to function signatures (supported in
Python 3.5) or in variable assignments (supported from Python 3.6
onward).

Interfacing with C

When interfacing with C, and in particular with pointers, use assertions
everywhere you assume the pointer to be non-NULL.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/althonos/pyhmmer/compare/v0.3.1...HEAD]

v0.3.1 [https://github.com/althonos/pyhmmer/compare/v0.3.0...v0.3.1] - 2021-05-08

Added

	Pipeline.scan_seq method to query a database of profiles with one or more sequences.

	transition_probabilities, match_emissions, insert_emissions properties to the HMM class, providing access to the numerical parameters of the HMM.

	consensus_structure and consensus_accessibility properties to the HMM class to get consensus lines from the source alignment if the HMM was created from a MSA.

	nseq and nseq_effective properties to the HMM class to get the number of training sequences and effective sequences used to build the HMM.

Changed

	HMM.checksum is now None if the p7H_CHKSUM flag is not set.

	Builder methods will now record sys.argv when creating a HMM.

Fixed

	HMM.write(..., binary=False) crashing on HMMs without a consensus line. (#5 [https://github.com/althonos/pyhmmer/issues/5]). Fixed upstream in (EddyRivasLab/HMMER#236 [https://github.com/EddyRivasLab/hmmer/pull/236]).

	Pipeline.reset mishandling the Z and domZ values if those were detected from the number of targets.

	pyhmmer.hmmer functions will not block until all results have been collected anymore when run in multithreaded mode.

v0.3.0 [https://github.com/althonos/pyhmmer/compare/v0.2.2...v0.3.0] - 2021-03-11

Added

	easel.MSAFile to read from a file containing

	accession, author, name and description properties to easel.MSA objects.

	plan7.Builder.build_msa to build a pHMM from a sequence alignment.

	Additional methods to easel.KeyHash, allowing to use it as a dict/set hybrid.

	Sequence.write and MSA.write methods to format a sequence or an alignment to a file handle.

	plan7.TopHist.to_msa method to convert all the top hits of a query against a database into a multiple sequence alignment.

	easel.MSA.sequences attribute to access individual sequences of an alignment using the collections.abc.Sequence interface.

	easel.DigitalMSA.textize method to convert a multiple sequence alignment in digital mode to its text-mode counterpart.

	Read-only name, accession and description properties to plan7.Profile showing attributes inherited from the HMM it was configured with.

	plan7.HMM.consensus property, allowing to access the consensus sequence of a pHMM.

	plan7.HMM equality implementation, using zero tolerance.

	plan7.Pipeline.search_msa to query a MSA against a sequence database.

	easel.Sequence.reverse_complement method allowing to reverse-complement inplace or to build a copy.

	errors.AlphabetMismatch exception for use in cases where an alphabet is expected but not matched by the input.

	hmmer.nhmmer function with the same behaviour as hmmer.phmmer, except it expects inputs with a DNA alphabet.

Fixed

	plan7.Builder.copy not copying some parameters correctly, causing pyhmmer.hmmer.phmmer to give inconsistent results in multithreaded mode.

	easel.Bitfield not properly handling index overflows.

	Documentation not rendering for the __init__ method of all classes.

Changed

	plan7.Builder gap-open and gap-extend probabilities are now set on instantiation and depend on the alphabet type.

	Constructors for easel.TextMSA and easel.DigitalMSA, which can now be given an iterable of easel.Sequence objects to store in the alignment.

Removed

	Unimplemented easel.SequenceFile.fetch and easel.SequenceFile.fetchinto methods.

v0.2.2 [https://github.com/althonos/pyhmmer/compare/v0.2.1...v0.2.2] - 2021-03-04

Fixed

	Linking issues on OSX caused by aggressive stripping of intermediate libraries.

	plan7.Builder RNG not reseeding between different HMMs.

v0.2.1 [https://github.com/althonos/pyhmmer/compare/v0.2.0...v0.2.1] - 2021-01-29

Added

	pyhmmer.plan7.HMM.checksum property to get the 32-bit checksum of an HMM.

v0.2.0 [https://github.com/althonos/pyhmmer/compare/v0.1.4...v0.2.0] - 2021-01-21

Added

	pyhmmer.plan7.Builder class to handle building a HMM from a sequence.

	Pipeline.search_seq to query a sequence against a sequence database.

	psutil dependency to detect the most efficient thread count for hmmsearch based on the number of physical CPUs.

	pyhmmer.hmmer.phmmer function to run a search of query sequences against a sequence database.

Changed

	Pipeline.search was renamed to Pipeline.search_hmm for disambiguation.

	libeasel.random sequences do not require the GIL anymore.

	Public API now have proper signature annotations.

Fixed

	Inaccurate exception messages in Pipeline.search_hmm.

	Unneeded RNG reallocation, replaced with re-initialisation where possible.

	SequenceFile.__next__ not working after being set in digital mode.

	sequences argument of hmmsearch now only requires a typing.Collection[DigitalSequence] instead of a typing.Collection[Sequence] (not more __getitem__ needed).

Removed

	hits argument to Pipeline.search_hmm to reduce risk of issues with TopHits reuse.

	Broken alignment coordinates on Domain classes.

v0.1.4 [https://github.com/althonos/pyhmmer/compare/v0.1.3...v0.1.4] - 2021-01-15

Added

	DigitalSequence.textize to convert a digital sequence to a text sequence.

	DigitalSequence.__init__ method allowing to create a digital sequence from any object implementing the buffer protocol.

	Alignment.hmm_accession property to retrieve the accession of the HMM in an alignment.

v0.1.3 [https://github.com/althonos/pyhmmer/compare/v0.1.2...v0.1.3] - 2021-01-08

Fixed

	Compilation issues in OSX-specific Cython code.

v0.1.2 [https://github.com/althonos/pyhmmer/compare/v0.1.1...v0.1.2] - 2021-01-07

Fixed

	Required Cython files not being included in source distribution.

v0.1.1 [https://github.com/althonos/pyhmmer/compare/v0.1.0...v0.1.1] - 2020-12-02

Fixed

	HMMFile calling file.peek without arguments, causing it to crash when passed some types, e.g. gzip.GzipFile.

	HMMFile failing to work with PyPy file objects because of a bug with their implementation of readinto.

	C/Python file object implementation using strcpy instead of memcpy, causing issues when null bytes were read.

v0.1.0 [https://github.com/althonos/pyhmmer/compare/v0.1.0-a5...v0.1.0] - 2020-12-01

Initial beta release.

Fixed

	TextSequence uses the sequence argument it’s given on instantiation.

	Segmentation fault in Sequence.__eq__ caused by implicit type conversion.

	Segmentation fault on SequenceFile.read failure.

	Missing type annotations for the pyhmmer.easel module.

v0.1.0-a5 [https://github.com/althonos/pyhmmer/compare/v0.1.0-a4...v0.1.0-a5] - 2020-11-28

Added

	Sequence.__len__ magic method so that len(seq) returns the number of letters in seq.

	Python file-handle support when opening an pyhmmer.plan7.HMMFile.

	Context manager protocol to pyhmmer.easel.SSIWriter.

	Type annotations for pyhmmer.easel.SSIWriter.

	add_alias to pyhmmer.easel.SSIWriter.

	write method to pyhmmer.plan7.OptimizedProfile to write an optimized profile in binary format.

	offsets property to interact with the disk offsets of a pyhmmer.plan7.OptimizedProfile instance.

	pyhmmer.hmmer.hmmpress emulating the hmmpress binary from HMMER.

	M property to pyhmmer.plan7.HMM exposing the number of nodes in the model.

Changed

	Bumped vendored Easel to v0.48.

	Bumped vendored HMMER to v3.3.2.

	pyhmmer.plan7.HMMFile will raise an EOFError when given an empty file.

	Renamed length property to L in pyhmmer.plan7.Background.

Fixed

	Segmentation fault when close method of pyhmmer.easel.SSIWriter was called more than once.

	close method of pyhmmer.easel.SSIWriter not writing the index contents.

v0.1.0-a4 [https://github.com/althonos/pyhmmer/compare/v0.1.0-a3...v0.1.0-a4] - 2020-11-24

Added

	MSA, TextMSA and DigitalMSA classes representing a multiple sequence alignment to pyhmmer.easel.

	Methods and protocol to copy a Sequence and a MSA.

	pyhmmer.plan7.OptimizedProfile wrapping a platform-specific optimized profile.

	SSIReader and SSIWriter classes interacting with sequence/subsequence indices to pyhmmer.easel.

	Exception handler using Python exceptions to report Easel errors.

Changed

	pyhmmer.hmmsearch returns an iterator of TopHits, with one instance per HMM in the input.

	pyhmmer.hmmsearch properly raises errors happenning in the background threads without deadlock.

	pyhmmer.plan7.Pipeline recycles memory between Pipeline.search calls.

Fixed

	Missing type annotations for the pyhmmer.errors module.

Removed

	Unneeded or private methods from pyhmmer.plan7.

v0.1.0-a3 [https://github.com/althonos/pyhmmer/compare/v0.1.0-a2...v0.1.0-a3] - 2020-11-19

Added

	TextSequence and DigitalSequence representing a Sequence in a given mode.

	E-value properties to Hit and Domain.

	TopHits now stores a reference to the pipeline it was obtained from.

	Pipeline.Z and Pipeline.domZ properties.

	Experimental pickling support to Alphabet.

	Experimental freelist to Sequence class to avoid allocation bottlenecks when iterating on a SequenceFile without recycling sequence buffers.

Changed

	Made Sequence an abstract base class.

	Additional Pipeline parameters can be passed as keyword arguments to pyhmmer.hmmsearch.

	SequenceFile.read can now be configured to skip reading the metadata or the content of a sequence.

Removed

	Redundant SequenceFile methods.

Fixed

	doctest loader crashing on Python 3.5.

	TopHits.threshold segfaulting when being called without prior Tophits.sort call

	Unknown format argument to SequenceFile constructor not raising the right error.

v0.1.0-a2 [https://github.com/althonos/pyhmmer/compare/v0.1.0-a1...v0.1.0-a2] - 2020-11-12

Added

	Support for compilation on PowerPC big-endian platforms.

	Type annotations and stub files for Cython modules.

Changed

	distutils [https://docs.python.org/3/library/distutils.html] is now used to compile the package, instead of calling autotools and letting HMMER configure itself.

	Bitfield.count now allows passing an argument (for compatibility with collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]).

v0.1.0-a1 [https://github.com/althonos/pyhmmer/compare/fe4c279...v0.1.0-a1] - 2020-11-10

Initial alpha release (test deployment to PyPI).

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyhmmer	

 	
 	
 pyhmmer.easel	

 	
 	
 pyhmmer.errors	

 	
 	
 pyhmmer.hmmer	

 	
 	
 pyhmmer.plan7	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

_

 	
 	__init__() (pyhmmer.easel.Bitfield method)

 	(pyhmmer.easel.DigitalMSA method)

 	(pyhmmer.easel.DigitalSequence method)

 	(pyhmmer.easel.KeyHash method)

 	(pyhmmer.easel.SequenceFile method)

 	(pyhmmer.easel.SSIReader method)

 	(pyhmmer.easel.SSIWriter method)

 	(pyhmmer.easel.TextMSA method)

 	(pyhmmer.easel.TextSequence method)

 	(pyhmmer.plan7.Background method)

 	(pyhmmer.plan7.Builder method)

 	(pyhmmer.plan7.HMM method)

 	(pyhmmer.plan7.HMMFile method)

 	(pyhmmer.plan7.OptimizedProfile method)

 	(pyhmmer.plan7.Pipeline method)

 	(pyhmmer.plan7.Profile method)

 	(pyhmmer.plan7.TopHits method)

A

 	
 	accession (pyhmmer.easel.MSA attribute)

 	(pyhmmer.easel.Sequence attribute)

 	(pyhmmer.plan7.Hit attribute)

 	(pyhmmer.plan7.HMM attribute)

 	(pyhmmer.plan7.Profile attribute)

 	add() (pyhmmer.easel.KeyHash method)

 	add_alias() (pyhmmer.easel.SSIWriter method)

 	add_file() (pyhmmer.easel.SSIWriter method)

 	
 	add_key() (pyhmmer.easel.SSIWriter method)

 	Alignment (class in pyhmmer.plan7)

 	AllocationError

 	Alphabet (class in pyhmmer.easel)

 	alphabet (pyhmmer.easel.DigitalMSA attribute)

 	(pyhmmer.easel.DigitalSequence attribute)

 	amino() (pyhmmer.easel.Alphabet method)

 	author (pyhmmer.easel.MSA attribute)

B

 	
 	Background (class in pyhmmer.plan7)

 	Bitfield (class in pyhmmer.easel)

 	
 	build() (pyhmmer.plan7.Builder method)

 	build_msa() (pyhmmer.plan7.Builder method)

 	Builder (class in pyhmmer.plan7)

C

 	
 	c_evalue (pyhmmer.plan7.Domain attribute)

 	checksum (pyhmmer.plan7.HMM attribute)

 	checksum() (pyhmmer.easel.MSA method)

 	(pyhmmer.easel.Sequence method)

 	clear() (pyhmmer.easel.KeyHash method)

 	(pyhmmer.easel.Sequence method)

 	(pyhmmer.plan7.Pipeline method)

 	(pyhmmer.plan7.Profile method)

 	(pyhmmer.plan7.TopHits method)

 	close() (pyhmmer.easel.SequenceFile method)

 	(pyhmmer.easel.SSIReader method)

 	(pyhmmer.easel.SSIWriter method)

 	(pyhmmer.plan7.HMMFile method)

 	command_line (pyhmmer.plan7.HMM attribute)

 	configure() (pyhmmer.plan7.Profile method)

 	
 	consensus (pyhmmer.plan7.HMM attribute)

 	consensus_accessibility (pyhmmer.plan7.HMM attribute)

 	consensus_structure (pyhmmer.plan7.HMM attribute)

 	copy() (pyhmmer.easel.DigitalMSA method)

 	(pyhmmer.easel.DigitalSequence method)

 	(pyhmmer.easel.KeyHash method)

 	(pyhmmer.easel.Sequence method)

 	(pyhmmer.easel.TextMSA method)

 	(pyhmmer.easel.TextSequence method)

 	(pyhmmer.plan7.Background method)

 	(pyhmmer.plan7.Builder method)

 	(pyhmmer.plan7.HMM method)

 	(pyhmmer.plan7.OptimizedProfile method)

 	(pyhmmer.plan7.Profile method)

 	count() (pyhmmer.easel.Bitfield method)

D

 	
 	data_offset() (pyhmmer.easel.SSIReader.Entry property)

 	description (pyhmmer.easel.MSA attribute)

 	(pyhmmer.easel.Sequence attribute)

 	(pyhmmer.plan7.Hit attribute)

 	(pyhmmer.plan7.HMM attribute)

 	(pyhmmer.plan7.Profile attribute)

 	DigitalMSA (class in pyhmmer.easel)

 	
 	DigitalSequence (class in pyhmmer.easel)

 	digitize() (pyhmmer.easel.TextMSA method)

 	(pyhmmer.easel.TextSequence method)

 	dna() (pyhmmer.easel.Alphabet method)

 	Domain (class in pyhmmer.plan7)

 	Domains (class in pyhmmer.plan7)

 	domains (pyhmmer.plan7.Hit attribute)

 	domZ (pyhmmer.plan7.Pipeline attribute)

E

 	
 	EaselError

 	
 	evalue (pyhmmer.plan7.Hit attribute)

F

 	
 	fd() (pyhmmer.easel.SSIReader.Entry property)

 	file_info() (pyhmmer.easel.SSIReader method)

 	
 	find_name() (pyhmmer.easel.SSIReader method)

 	format() (pyhmmer.easel.SSIReader.FileInfo property)

G

 	
 	guess_alphabet() (pyhmmer.easel.SequenceFile method)

H

 	
 	Hit (class in pyhmmer.plan7)

 	HMM (class in pyhmmer.plan7)

 	hmm_accession (pyhmmer.plan7.Alignment attribute)

 	hmm_from (pyhmmer.plan7.Alignment attribute)

 	hmm_name (pyhmmer.plan7.Alignment attribute)

 	
 	hmm_sequence (pyhmmer.plan7.Alignment attribute)

 	hmm_to (pyhmmer.plan7.Alignment attribute)

 	HMMFile (class in pyhmmer.plan7)

 	hmmpress() (in module pyhmmer.hmmer)

 	hmmsearch() (in module pyhmmer.hmmer)

I

 	
 	i_evalue (pyhmmer.plan7.Domain attribute)

 	identity_sequence (pyhmmer.plan7.Alignment attribute)

 	included (pyhmmer.plan7.TopHits attribute)

 	insert_emissions (pyhmmer.plan7.HMM attribute)

 	
 	is_local() (pyhmmer.plan7.OptimizedProfile method)

 	(pyhmmer.plan7.Profile method)

 	is_multihit() (pyhmmer.plan7.Profile method)

 	is_sorted() (pyhmmer.plan7.TopHits method)

K

 	
 	K (pyhmmer.easel.Alphabet attribute)

 	
 	KeyHash (class in pyhmmer.easel)

 	Kp (pyhmmer.easel.Alphabet attribute)

L

 	
 	L (pyhmmer.plan7.Background attribute)

 	(pyhmmer.plan7.Profile attribute)

M

 	
 	M (pyhmmer.plan7.HMM attribute)

 	(pyhmmer.plan7.Profile attribute)

 	match_emissions (pyhmmer.plan7.HMM attribute)

 	model_mask (pyhmmer.plan7.HMM attribute)

 	
 module

 	pyhmmer

 	pyhmmer.easel

 	pyhmmer.errors

 	pyhmmer.hmmer

 	pyhmmer.plan7

 	
 	MSA (class in pyhmmer.easel)

N

 	
 	name (pyhmmer.easel.MSA attribute)

 	(pyhmmer.easel.Sequence attribute)

 	(pyhmmer.plan7.Hit attribute)

 	(pyhmmer.plan7.HMM attribute)

 	(pyhmmer.plan7.Profile attribute)

 	
 	name() (pyhmmer.easel.SSIReader.FileInfo property)

 	nhmmer() (in module pyhmmer.hmmer)

 	nseq (pyhmmer.plan7.HMM attribute)

 	nseq_effective (pyhmmer.plan7.HMM attribute)

O

 	
 	optimized() (pyhmmer.plan7.Profile method)

 	
 	OptimizedProfile (class in pyhmmer.plan7)

P

 	
 	parse() (pyhmmer.easel.SequenceFile method)

 	parseinto() (pyhmmer.easel.SequenceFile method)

 	phmmer() (in module pyhmmer.hmmer)

 	Pipeline (class in pyhmmer.plan7)

 	pre_score (pyhmmer.plan7.Hit attribute)

 	Profile (class in pyhmmer.plan7)

 	
 pyhmmer

 	module

 	
 	
 pyhmmer.easel

 	module

 	
 pyhmmer.errors

 	module

 	
 pyhmmer.hmmer

 	module

 	
 pyhmmer.plan7

 	module

R

 	
 	read() (pyhmmer.easel.SequenceFile method)

 	readinto() (pyhmmer.easel.SequenceFile method)

 	record_length() (pyhmmer.easel.SSIReader.Entry property)

 	record_offset() (pyhmmer.easel.SSIReader.Entry property)

 	
 	reference (pyhmmer.plan7.HMM attribute)

 	reported (pyhmmer.plan7.TopHits attribute)

 	reverse_complement() (pyhmmer.easel.DigitalSequence method)

 	(pyhmmer.easel.TextSequence method)

 	rna() (pyhmmer.easel.Alphabet method)

S

 	
 	scan_seq() (pyhmmer.plan7.Pipeline method)

 	score (pyhmmer.plan7.Domain attribute)

 	(pyhmmer.plan7.Hit attribute)

 	search_hmm() (pyhmmer.plan7.Pipeline method)

 	search_msa() (pyhmmer.plan7.Pipeline method)

 	search_seq() (pyhmmer.plan7.Pipeline method)

 	seed (pyhmmer.plan7.Builder attribute)

 	(pyhmmer.plan7.Pipeline attribute)

 	Sequence (class in pyhmmer.easel)

 	sequence (pyhmmer.easel.DigitalSequence attribute)

 	(pyhmmer.easel.TextSequence attribute)

 	
 	SequenceFile (class in pyhmmer.easel)

 	sequences (pyhmmer.easel.DigitalMSA attribute)

 	(pyhmmer.easel.TextMSA attribute)

 	set_digital() (pyhmmer.easel.SequenceFile method)

 	sort() (pyhmmer.plan7.TopHits method)

 	source (pyhmmer.easel.Sequence attribute)

 	SSIReader (class in pyhmmer.easel)

 	SSIReader.Entry (class in pyhmmer.easel)

 	SSIReader.FileInfo (class in pyhmmer.easel)

 	SSIWriter (class in pyhmmer.easel)

 	symbols (pyhmmer.easel.Alphabet attribute)

T

 	
 	target_from (pyhmmer.plan7.Alignment attribute)

 	target_name (pyhmmer.plan7.Alignment attribute)

 	target_sequence (pyhmmer.plan7.Alignment attribute)

 	target_to (pyhmmer.plan7.Alignment attribute)

 	textize() (pyhmmer.easel.DigitalMSA method)

 	(pyhmmer.easel.DigitalSequence method)

 	
 	TextMSA (class in pyhmmer.easel)

 	TextSequence (class in pyhmmer.easel)

 	to_msa() (pyhmmer.plan7.TopHits method)

 	toggle() (pyhmmer.easel.Bitfield method)

 	TopHits (class in pyhmmer.plan7)

 	transition_probabilities (pyhmmer.plan7.HMM attribute)

U

 	
 	UnexpectedError

W

 	
 	write() (pyhmmer.easel.MSA method)

 	(pyhmmer.easel.Sequence method)

 	(pyhmmer.plan7.HMM method)

 	(pyhmmer.plan7.OptimizedProfile method)

Z

 	
 	Z (pyhmmer.plan7.Pipeline attribute)

 	
 	zero() (pyhmmer.plan7.HMM method)

Test Data

This directory contains test data that were collected from different sources.
This file attempts to track provenance to facilitate update and licensing.

HMMs

txt

This folder contains HMMs in ASCII format (either from HMMER2 or HMMER3):

	PF02826.hmm was extracted manually from Pfam v33.1.

	PKSI-AT.hmm2 was obtained from the AntiSMASH repository (/detection/hmm_detection/data/PKS_AT.hmm [https://github.com/antismash/antismash/blob/master/antismash/detection/hmm_detection/data/PKS_AT.hmm])

	t2pks.hmm was obtained from the AntiSMASH repository (modules/t2pks/data/t2pks.hmm [https://github.com/antismash/antismash/blob/master/antismash/modules/t2pks/data/t2pks.hmm])

bin

This folder was obtained by converting files from the ASCII folder using
hmmconvert -b, provided with HMMER v3.3.1.

db

This folder was obtained by pressing files from the ASCII folder using
hmmpress, provided with HMMER v3.3.1.

 _images/active_site.png
rrieti

ylmalonyl-CoA J\ malonyl-CoA
S

HO,C 'COSCoA HO,C 'COSCoA

YASH HASH HAFH

nav.xhtml

 Table of Contents

 		
 pyHMMER

 		
 Installation

 		
 PyPi

 		
 EMBL Package Registry

 		
 GitHub + pip

 		
 GitHub + setuptools

 		
 Examples

 		
 HMM Building

 		
 Loading the alignment

 		
 Building an HMM

 		
 Saving the resulting HMM

 		
 Applying the HMM to a sequence database

 		
 Active site analysis

 		
 Loading the HMM

 		
 Building digitized sequences

 		
 Running a search pipeline

 		
 Rendering the alignments

 		
 Checking individual positions for catalytic activity

 		
 API Reference

 		
 HMMER

 		
 Easel

 		
 Plan7

 		
 Errors

 		
 Contributing

 		
 Setting up a local repository

 		
 Running tests

 		
 Coding guidelines

 		
 Interfacing with C

 		
 Changelog

 		
 Unreleased

 		
 v0.3.1 - 2021-05-08

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.3.0 - 2021-03-11

 		
 Added

 		
 Fixed

 		
 Changed

 		
 Removed

 		
 v0.2.2 - 2021-03-04

 		
 Fixed

 		
 v0.2.1 - 2021-01-29

 		
 Added

 		
 v0.2.0 - 2021-01-21

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 v0.1.4 - 2021-01-15

 		
 Added

 		
 v0.1.3 - 2021-01-08

 		
 Fixed

 		
 v0.1.2 - 2021-01-07

 		
 Fixed

 		
 v0.1.1 - 2020-12-02

 		
 Fixed

 		
 v0.1.0 - 2020-12-01

 		
 Fixed

 		
 v0.1.0-a5 - 2020-11-28

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.1.0-a4 - 2020-11-24

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 v0.1.0-a3 - 2020-11-19

 		
 Added

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 v0.1.0-a2 - 2020-11-12

 		
 Added

 		
 Changed

 		
 v0.1.0-a1 - 2020-11-10

_static/minus.png

_static/plus.png

_static/file.png

