Miscellaneous#

class pyhmmer.plan7.Cutoffs#

A mutable view over the score cutoffs of a HMM or a Profile.

Added in version 0.4.6.

as_vector()#

Return a view over the score cutoffs as a VectorF.

gathering_available()#

Check whether the gathering thresholds are available.

noise_available()#

Check whether the noise cutoffs are available.

trusted_available()#

Check whether the trusted cutoffs are available.

gathering#

The gathering thresholds, if any.

Example

This property can be used to set the gathering cutoffs by passing it an iterable of two float:

>>> thioesterase.cutoffs.gathering = (180.0, 120.0)
>>> thioesterase.cutoffs.gathering_available()
True
>>> thioesterase.cutoffs.gathering
(180.0, 120.0)

Set the attribute to None or delete it with del to clear the gathering thresholds:

>>> thioesterase.cutoffs.gathering = None
>>> thioesterase.cutoffs.gathering_available()
False

Added in version 0.4.8.

Type:

tuple of float, or None

gathering1#

The first gathering threshold, if any.

Type:

float or None

gathering2#

The second gathering threshold, if any.

Type:

float or None

noise#

The noise cutoffs, if available.

Added in version 0.4.8.

Type:

tuple of float, or None

noise1#

The first noise cutoff, if any.

Type:

float or None

noise2#

The second noise cutoff, if any.

Type:

float or None

trusted#

The trusted cutoffs, if available.

Added in version 0.4.8.

Type:

tuple of float, or None

trusted1#

The first trusted score cutoff, if any.

Type:

float or None

trusted2#

The second trusted score cutoff, if any.

Type:

float or None

class pyhmmer.plan7.EvalueParameters#

A mutable view over the e-value parameters of a HMM or a Profile.

The e-value for each filter is estimated based off a maximum likelihood distribution fitted for each profile HMM, either a Gumbel distribution for the MSV and Viterbi filters, or an exponential distribution for the Forward filter.

Added in version 0.4.6.

as_vector()#

Return a view over the e-value parameters as a VectorF.

f_lambda#

The \(\lambda\) parameter for the Forward filter distribution.

Type:

float or None

f_tau#

The \(\tau\) parameter for the Forward filter distribution.

Type:

float or None

m_lambda#

The \(\lambda\) parameter for the MSV filter distribution.

Type:

float or None

m_mu#

The \(\mu\) parameter for the MSV filter distribution.

Type:

float or None

v_lambda#

The \(\lambda\) parameter for the Viterbi filter distribution.

Type:

float or None

v_mu#

The \(\mu\) parameter for the Viterbi filter distribution.

Type:

float or None

class pyhmmer.plan7.Offsets#

A mutable view over the disk offsets of a profile.

class pyhmmer.plan7.Transitions(enum.IntEnum)#

A helper enum for indices of the HMM transition probability matrix.

The Plan 7 model architecture used in HMMER describes a HMM which has 3 states and 7 transitions (hence the name) for every node of the model. The HMM can transition from a match state (\(M_n\)) to the next match stage (\(M_{n+1}\)), to an insertion state (\(I_n\)) or a deletion state (\(D_{n+1}\)). However, there are no transitions between a deletion and insertion state.

Added in version 0.8.1.

MM = 0#

\(M_{i} \to M_{i+1}\).

MI = 1#

\(M_{i} \to I_{i+1}\).

MD = 2#

\(M_{i} \to D_{i+1}\).

IM = 3#

\(I_{i} \to M_{i+1}\).

II = 4#

\(I_{i} \to I_{i+1}\).

DM = 5#

\(D_{i} \to M_{i+1}\).

DD = 6#

\(D_{i} \to D_{i+1}\).